Civil Programs

Hydrology

Flood Characteristics of Mississippi Streams
Input:
Drainage Area = sq. mi.
Channel Slope = ft/mi
Channel Length = mi.
Results:
Q2 = 296(A)0.81(S)0.03(L)-0.36 = cfs
Q5 = 406(A)0.84(S)0.07(L)-0.35 = cfs
Q10 = 482(A)0.85(S)0.09(L)-0.34 = cfs
Q25 = 577(A)0.85(S)0.10(L)-0.32 = cfs
Q50 = 648(A)0.85(S)0.11(L)-0.31 = cfs
Q100 = 716(A)0.85(S)0.11(L)-0.30 = cfs
Q200 = 786(A)0.85(S)0.12(L)-0.29 = cfs
Q500 = 874(A)0.85(S)0.12(L)-0.28 = cfs

Runoff Curve Number
 Curve
No.
Area
(acres)
Multiple
Area 1
Area 2
Area 3
Area 4
Area 5
Area 6
  TOTAL

Weighted CN =

 

Runoff:

County:
  Rainfall Frequency, yr.
  1 2 5 10 25 50 100
Rainfall, P(24-hr), in.
Runoff, Q, in.

Time of Concentration Calculator
Input Data:
Slope = ft/ft
Length of overland flow = ft
Watershed area = sq. mi.
Retardance coefficient =
Rainfall intensity = in/hr
Rational coefficient =
Retardance roughness =
Mannings overland roughness =
Results:
Izzards formula = min.
Kerbys equation = min.
Kirpichs equation = min.
Kinematic equation = min.
Bransby Williams equation = min.
FAA equation = min.

Formulas:

Izzards formula

tc41KL1/3

i2/3
         
K = 0.0007i + Cr

S1/3

Kerbys equation

  tc = c (Ln/i1/2)0.467

Kirpichs equation

 L0.77
tc = 0.0078 
 S0.385

Kinematic equation

 L0.6 n0.6
tc = 0.0078 
 S0.385

Bransby Williams equation

 L
tc = 21.3 
 5280 A0.1 S0.2

FAA equation

 1.8 (1.1 - C) L0.5
tc =
 S0.33
Where:
C = the dimensionless runoff coefficient
L = the distance traveled, in feet, and
S = the slope, in percent

Inputs:

Retardance coefficient

Very smooth asphalt:0.007
Tar and sand pavement:0.0075
Concrete:0.012
Tar and gravel pavement:0.017
Closely clipped sod:0.046
Dense bluegrass:0.060

Rainfall intensity

Time of concentration is calculated from rainfall intensity iteratively using an IDF curve. Enter the trial rainfall intensity in inches per hour. Use the calculated tc to find a new intensity from the IDF curve.

Rational coefficient

Downtown Business:0.70 - 0.95
Single Family Res:0.30 - 0.50
Asphalt/Concrete:0.70 - 0.95
Sandy Soil Lawn:0.05 - 0.20
Heavy Soil Lawn:0.13 - 0.35
Brick:0.70 - 0.85

Retardance roughness

Smooth Pavement:0.02
Poor grass, bare sod:0.30
Average grass:0.40
Dense grass:0.80

Mannings overland roughness

Concrete:0.011
Bare sand:0.010
Natural range:0.080
Bluegrass sod:0.450
Short prairie:0.150
Woods:0.450

Rational C Values
RUNOFF COEFFICIENTS FOR THE RATIONAL FORMULA FOR HYDROLOGIC SOIL GROUP AND SLOPE RANGE
  A B C D
Land Use 0-2% 2-6% 6%+ 0-2% 2-6% 6%+ 0-2% 2-6% 6%+ 0-2% 2-6% 6%+
Cultivated Land 0.08 0.13 0.16 0.11 0.15 0.21 0.14 0.19 0.26 0.18 0.23 0.31
  0.14 0.18 0.22 0.16 0.21 0.28 0.20 0.25 0.34 0.24 0.29 0.41
Pasture 0.12 0.20 0.30 0.18 0.28 0.37 0.24 0.34 0.44 0.30 0.40 0.50
  0.15 0.25 0.37 0.23 0.34 0.45 0.30 0.42 0.52 0.37 0.50 0.62
Meadow 0.10 0.16 0.25 0.14 0.22 0.30 0.20 0.28 0.36 0.24 0.30 0.40
  0.14 0.22 0.30 0.20 0.28 0.37 0.26 0.35 0.44 0.30 0.40 0.50
Forest 0.05 0.08 0.11 0.08 0.11 0.14 0.10 0.13 0.16 0.12 0.16 0.20
  0.08 0.11 0.14 0.10 0.14 0.18 0.12 0.16 0.20 0.15 0.20 0.25
Residential 0.25 0.28 0.31 0.27 0.30 0.35 0.30 0.33 0.38 0.33 0.36 0.42
Lot Size 1/8 acre 0.33 0.37 0.40 0.35 0.39 0.44 0.38 0.42 0.49 0.41 0.45 0.54
Lot Size 1/4 acre 0.22 0.26 0.29 0.24 0.29 0.33 0.27 0.31 0.36 0.30 0.34 0.40
  0.30 0.34 0.37 0.33 0.37 0.42 0.36 0.40 0.47 0.38 0.42 0.52
Lot Size 1/3 acre 0.19 0.23 0.26 0.22 0.26 0.30 0.25 0.29 0.34 0.28 0.32 0.39
  0.28 0.32 0.35 0.30 0.35 0.39 0.33 0.38 0.45 0.36 0.40 0.50
Lot Size 1/2 acre 0.16 0.20 0.24 0.19 0.23 0.28 0.22 0.27 0.32 0.26 0.30 0.37
  0.25 0.29 0.32 0.28 0.32 0.36 0.31 0.35 0.42 0.34 0.38 0.48
Lot Size 1 acre 0.14 0.19 0.22 0.17 0.21 0.26 0.20 0.25 0.31 0.24 0.29 0.35
  0.22 0.26 0.29 0.24 0.28 0.34 0.28 0.32 0.40 0.31 0.35 0.46
Industrial 0.67 0.68 0.68 0.68 0.68 0.69 0.68 0.69 0.69 0.69 0.69 0.70
  0.85 0.85 0.86 0.85 0.86 0.86 0.86 0.86 0.87 0.86 0.86 0.88
Commercial 0.71 0.71 0.72 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
  0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.89 0.89 0.90
Streets 0.70 0.71 0.72 0.71 0.72 0.74 0.72 0.73 0.76 0.73 0.75 0.78
  0.76 0.77 0.79 0.80 0.82 0.84 0.84 0.85 0.89 0.89 0.91 0.95
Open Space 0.05 0.10 0.14 0.08 0.13 0.19 0.12 0.17 0.24 0.16 0.21 0.28
  0.11 0.16 0.20 0.14 0.19 0.26 0.18 0.23 0.32 0.22 0.27 0.39
Parking 0.85 0.86 0.87 0.85 0.86 0.87 0.85 0.86 0.87 0.85 0.86 0.87
  0.95 0.96 0.97 0.95 0.96 0.97 0.95 0.96 0.97 0.95 0.96 0.97
TAKEN FROM: "RECOMMENDED HYDROLOGIC PROCEDURES FOR COMPUTING RUNOFF FROM SMALL WATERSHEDS IN PENNSYLVANIA", 1982, The Pennsylvania State University, Chapter 4, pp 4.18-4.19
A Runoff coefficients for storm recurrence intervals less than 25 years
B Runoff coefficients for storm recurrence intervals of 25 years or more

Last Updated on 2/4/2003
By Nicholas Connolly
Email: nick@sd-w.com

Mississippi Rainfall Amounts
County Rainfall Type 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr 1-yr
Adams III 5.0 6.3 7.0 8.4 9.1 10.3 4.0
Alcorn II 3.9 4.8 5.6 6.5 7.0 7.7 3.3
Amite III 4.8 6.4 7.4 8.6 9.4 10.6 4.2
Attala II 4.3 5.4 6.3 7.2 8.1 8.8 3.7
Benton II 4.0 4.9 5.7 6.6 7.2 7.8 3.4
Bolivar II 4.3 5.3 6.2 7.0 7.8 8.6 3.6
Calhoun II 4.1 5.2 5.9 6.9 7.6 8.3 3.5
Carroll II 4.2 5.3 6.2 7.1 7.9 8.6 3.6
Chickasaw II 4.1 5.1 5.9 6.8 7.6 8.3 3.5
Choctaw II 4.2 5.3 6.2 7.0 7.9 8.6 3.6
Claiborne III 4.6 6.0 6.9 7.8 8.8 9.6 3.9
Clarke III 4.7 6.0 6.9 7.9 8.9 9.8 3.9
Clay II 4.1 5.2 6.0 6.9 7.7 8.4 3.5
Coahoma II 4.2 5.2 6.0 6.9 7.7 8.4 3.5
Copiah III 4.6 6.0 6.9 7.9 8.8 9.7 3.9
Covington III 4.7 6.2 7.1 8.2 9.2 10.2 4.0
DeSoto II 4.1 5.0 5.8 6.7 7.2 8.1 4.0
Forrest III 4.9 6.5 7.7 8.8 10.0 11.2 4.2
Franklin III 4.8 6.3 7.0 8.3 9.0 10.1 4.0
George III 5.4 7.3 8.5 9.7 11.1 12.3 4.4
Greene III 4.9 6.7 7.8 8.9 10.4 11.5 4.2
Grenada II 4.2 5.2 6.0 6.9 7.7 8.5 3.6
Hancock III 5.8 7.5 8.7 10.5 11.4 12.5 4.7
Harrison III 5.8 7.5 8.8 10.5 11.4 12.6 4.7
Hinds III 4.4 5.8 6.7 7.7 8.6 9.4 3.9
Holmes II 4.3 5.4 6.3 7.2 8.1 8.8 3.7
Humphreys III 4.4 5.4 6.4 7.3 8.2 8.8 3.7
Issaquena III 4.3 5.6 6.6 7.5 8.4 9.1 3.8
Itawamba II 3.9 5.1 5.8 6.6 7.3 8.0 3.4
Jackson III 5.9 7.7 9.0 10.5 11.5 13 4.7
Jasper III 4.6 6.0 6.8 7.9 8.8 9.7 3.9
Jefferson III 4.7 6.1 7.0 8.0 8.9 9.9 4.0
Jefferson Davis III 4.7 6.2 7.0 8.2 9.0 10.0 4.0
Jones III 4.8 6.2 7.2 8.2 9.3 10.5 4.0
Kemper III 4.4 5.6 6.5 7.4 8.2 9.0 3.7
Lafayette II 4.1 5.1 5.8 6.8 7.4 8.2 3.5
Lamar III 4.9 6.5 7.6 8.6 9.8 11.0 4.2
Lauderdale III 4.6 5.7 6.7 7.6 8.5 9.4 3.8
Lawrence III 4.6 6.2 7.0 8.2 9.0 10.0 4.0
Leake III 4.3 5.5 6.5 7.4 8.3 9.0 3.8
Lee II 4.0 5.0 5.8 6.7 7.4 8.1 3.4
Leflore II 4.3 5.3 6.2 7.1 7.9 8.6 3.6
Lincoln III 4.7 6.2 7.0 8.2 9.0 10.0 4.0
Lowndes II 4.2 5.3 6.1 7.0 7.8 8.5 3.6
Madison III 4.4 5.6 6.5 7.5 8.4 9.1 3.8
Marion III 4.8 6.4 7.4 8.8 9.6 10.8 4.2
Marshall II 4.0 5.0 5.7 6.7 7.2 7.9 3.4
Monroe II 4.1 5.1 5.9 6.8 7.5 8.3 3.5
Montgomery II 4.2 5.3 6.2 7.0 7.8 8.6 3.6
Neshoba III 4.4 5.5 6.5 7.4 8.2 9.0 3.8
Newton III 4.5 5.7 6.7 7.6 8.5 9.3 3.8
Noxubee II 4.3 5.4 6.3 7.2 8.0 8.8 3.6
Oktibbeha II 4.2 5.3 6.1 7.0 7.8 8.6 3.6
Panola II 4.1 5.1 5.9 6.8 7.5 8.2 3.5
Pearl River III 5.0 7.0 8.2 9.4 10.5 11.7 4.4
Perry III 4.9 6.6 7.8 8.8 10.1 11.4 4.2
Pike III 4.8 6.4 7.4 8.5 9.5 10.6 4.2
Pontotoc II 4.0 5.1 5.8 6.8 7.4 8.1 3.5
Prentiss II 3.9 4.9 5.6 6.6 7.3 7.8 3.3
Quitman II 4.2 5.2 6.0 6.9 7.6 8.3 3.5
Rankin III 4.4 5.8 6.7 7.7 8.6 9.4 3.9
Scott III 4.5 5.7 6.6 7.6 8.5 9.3 3.8
Sharkey III 4.4 5.5 6.5 7.4 8.3 9.0 3.8
Simpson III 4.5 6.0 6.9 7.8 8.8 9.7 3.9
Smith III 4.6 5.9 6.8 7.8 8.8 9.7 3.9
Stone III 5.3 7.2 8.3 9.6 10.9 12.1 4.4
Sunflower II 4.3 5.3 6.2 7.1 7.9 8.7 3.6
Tallahatchie II 4.2 5.2 6.0 6.9 7.7 8.4 3.6
Tate II 4.1 5.1 5.8 6.7 7.3 8.1 3.4
Tippah II 4.0 4.9 5.6 6.6 7.2 7.8 3.4
Tishomingo II 3.9 4.8 5.6 6.5 7.0 7.7 3.3
Tunica II 4.1 5.1 5.9 6.8 7.4 8.2 3.5
Union II 4.0 5.0 5.7 6.7 7.3 8.0 3.4
Walthall III 4.8 6.4 7.4 8.6 9.6 10.8 4.2
Warren III 4.5 5.8 6.7 7.7 8.6 9.3 3.9
Washington III 4.4 5.4 6.4 7.3 8.1 8.9 3.7
Wayne III 4.8 6.3 7.3 8.4 9.5 10.5 4.0
Webster II 4.2 5.2 6.1 7.0 7.7 8.5 3.6
Wilkinson III 4.9 6.5 7.4 8.7 9.5 10.8 4.2
Winston II 4.3 5.4 6.3 7.2 8.0 8.8 3.7
Yalobusha II 4.1 5.2 6.0 6.9 7.6 8.4 3.5
Yazoo III 4.4 5.5 6.5 7.4 8.3 9.0 3.8

Concrete Pipe Sizes

ROUND PIPES:

Pipe Size (in.) Arch Equiv. Metric Equivalent (mm) Area (ft�) Weight (lbs/ft) Wall Thickness (in.)
15 18x11 375 1.2 140
18 22x13 450 1.8 180
24 29x18 600 3.1 286 3
30 36x23 750 4.9 402
36 44x27 900 7.1 654
42 51x31 1,050 9.6 810
48 58x36 1,200 12.6 1,010
54 65x40 1,350 15.9 1,208
60 73x45 1,500 19.6 1,475
72 88x54 1,800 28.3 1,810 7

ARCH PIPES:

Pipe Size (in.) Round Equiv. Metric Equivalent (mm) Area (ft�) Weight (lbs/ft) Wall Thickness (in.)
18x11 15 460x280 1.1 188 3
22x13 18 560x245 1.6 233 3 1/8
29x18 24 725x460 2.9 325
36x23 30 920x570 4.4 392
44x27 36 1110x675 6.5 537 4
51x31 42 1300x795 8.7 696
58x36 48 1485x915 11.4 885 5
65x40 54 1650x1015 14.3 1,079
73x45 60 1855x1145 17.7 1,333 6
88x54 72 2235x1370 25.6 1,856 7

End Section Data

pipe dimensions

ROUND PIPES

Pipe Size (in.) Arch Equiv. Metric Equivalent (mm) Weight (lbs/sec) A B C D L Wall Thickness
15 18x11 375 1,000 6" 27" 46" 32" 73" 2.250"
18 22x13 450 1,180 9" 27" 46" 36" 73" 2.500"
24 29x18 600 1,666 10" 44" 30" 48" 74" 3.000"
30 36x23 750 1,960 12" 54" 20" 60" 74" 3.500"
36 44x27 900 4,430 15" 63" 35" 72" 98" 4.750"
42 51x31 1,050 5,630 21" 63" 35" 78" 98" 5.250"
48 58x36 1,200 6,870 24" 72" 26" 84" 98" 5.750"
54 65x40 1,350 8,320 28" 78" 22" 90" 100" 6.250"
60 73x45 1,500 10,660 40" 78" 22" 96" 100" 6.750"
72 88x54 1,800 14,820 46" 78" 22" 102" 100" 7.000"

 

ARCH PIPES

Pipe Size (in.) Round Equiv. Metric Equivalent (mm) Weight (lbs/sec) A B C D L Wall Thickness
22x13 18 560x245 1,050 7" 27" 45" 36" 72" 3.125"
29x18 24 725x460 1,580 8" 39" 33" 48" 72" 3.500"
36x23 30 920x570 2,250 10" 48" 24" 60" 72" 3.500"
44x27 36 1110x675 3,900 10" 60" 36" 72" 96" 4.000"
51x31 42 1300x795 5,420 15" 60" 36" 78" 96" 4.500"
58x36 48 1485x915 6,540 21" 60" 36" 84" 96" 5.000"
65x40 54 1650x1015 7,640 25" 60" 36" 90" 96" 5.500"
73x45 60 1855x1145 9,510 26" 75" 21" 96" 96" 6.000"
88x54 72 2235x1370 14,840 35" 78" 22" 120" 100" 7.000"

ADS Pipe Sizes
Nominal Diameter Inside Diameter, Average Outside Diameter, Average Inner Liner Thickness, Minimum Minimum Pipe Stiffness @ 5% Deflection Weight kg./6m (lbs./20 ft.) Area mm2/mm "I" cm4/cm "C" mm
100 mm
(4")
104 mm
(4.10")
120 mm
(4.78")
0.5 mm
(0.020")
340 kN/m2
50 psi
4.08 kg
(9.00 lbs)
1.59
(0.063 in2/in)
0.010
(0.0006 in4/in)
3.06
(0.12 in)
150 mm
(6")
152 mm
(6.00")
176 mm
(6.92")
0.5 mm
(0.020")
340 kN/m2
50 psi
7.71 kg
(17.00 lbs)
2.15
(0.085 in2/in)
0.035
(0.0021 in4/in)
4.94
(0.19 in)
200 mm
(8")
200 mm
(7.90")
233 mm
(9.11")
0.6 mm
(0.024")
340 kN/m2
50 psi
13.97 kg
(30.80 lbs)
2.75
(0.108 in2/in)
0.078
(0.005 in4/in)
6.36
(0.25 in)
250 mm
(10")
251 mm
(9.90")
287 mm
(11.36")
0.6 mm
(0.024")
340 kN/m2
50 psi
20.96 kg
(46.20 lbs)
3.48
(0.137 in2/in)
0.134
(0.008 in4/in)
7.58
(0.30 in)
300 mm
(12")
308 mm
(12.15")
367 mm
(14.45")
0.9 mm
(0.035")
345 kN/m2
50 psi
28.96 kg
(63.80 lbs)
5.50
(0.217 in2/in)
0.574
(0.035 in4/in)
10.92
(0.43 in)
375 mm
(15")
380 mm
(14.98")
448 mm
(17.57")
1.0 mm
(0.039")
290 kN/m2
42 psi
42.00 kg
(92.50 lbs)
6.91
(0.272 in2/in)
0.901
(0.055 in4/in)
13.21
(0.52 in)
450 mm
(18")
459 mm
(18.07")
536 mm
(21.20")
1.3 mm
(0.051")
275 kN/m2
40 psi
58.38 kg
(128.60 lbs)
6.93
(0.273 in2/in)
1.327
(0.081 in4/in)
14.48
(0.57 in)
600 mm
(24")
612 mm
(24.08")
719 mm
(27.80")
1.5 mm
(0.059")
235 kN/m2
34 psi
99.93 kg
(220.30 lbs)
8.23
(0.324 in2/in)
2.245
(0.137 in4/in)
18.80
(0.74 in)
750 mm
(30")
762 mm
(30.00")
892 mm
(35.10")
1.5 mm
(0.059")
195 kN/m2
28 psi
145.83 kg
(321.50 lbs)
9.60
(0.378 in2/in)
4.539
(0.277 in4/in)
21.84
(0.86 in)
900 mm
(36")
914 mm
(36.00")
1059 mm
(41.70")
1.7 mm
(0.067")
150 kN/m2
22 psi
191.83 kg
(422.9 lbs)
10.19
(0.401 in2/in)
6.555
(0.400 in4/in)
25.40
(1.00 in)
1050 mm
(42")
Type S
1054 mm
(41.40")
1212 mm
(47.70")
1.8 mm
(0.070")
140 kN/m2
20 psi
239.77 kg
(528.60 lbs)
11.64
(0.458 in2/in)
9.373
(0.572 in4/in)
30.73
(1.21 in)
1050 mm
(42")
Type D
1054 mm
(41.50")
1187 mm
(46.75")
1.8 mm
(0.070")
140 kN/m2
20 psi
269.76 kg
(594.70 lbs)
14.86
(0.585 in2/in)
9.685
(0.591 in4/in)
35.31
(1.39 in)
1200 mm
(48")
Type S
1209 mm
(47.60")
1361 mm
(53.60")
1.8 mm
(0.070")
125 kN/m2
18 psi
283.50 kg
(625.00 lbs)
12.58
(0.495 in2/in)
9.341
(0.570 in4/in)
29.72
(1.17 in)
1200 mm
(48")
Type D
1208 mm
(47.55")
1339 mm
(52.70")
1.8 mm
(0.070")
125 kN/m2
18 psi
309.72 kg
(682.80 lbs)
14.76
(0.581 in2/in)
10.090
(0.616 in4/in)
33.02
(1.30 in)
1500 mm
(60")
Type S
1512 mm
(59.5")
1684 mm
(66.3")
1.8 mm
(0.070")
95 kN/m2
14 psi
439.56 kg
(969.00 lbs)
14.68
(0.578 in2/in)
14.09
(0.860 in4/in)
33.66
(1.32 in)
1500 mm
(60")
Type D
1514 mm
(59.6")
1664 mm
(65.5")
1.8 mm
(0.070")
95 kN/m2
14 psi
509.53 kg
(1123.30 lbs)
17.15
(0.675 in2/in)
13.305
(0.812 in4/in)
36.32
(1.43 in)

Hydraulics

Pipe Flow
NOTE: Program selects pipe sizes and
design conditions primarily on Full-Flow.
Input Data:
Design Flow = cfs
Pipe Slope = ft/ft
Mannings 'n' =
Results:
Diameter = in
Percent full = %
   

Results:

*********INPUT DATA*********

DESIGN FLOW = 10 CFS

PIPE SLOPE = 0.02 FT/FT

MANNING'S ROUGHNESS COEF. = 0.012

**********PIPE SIZE***********

PIPE DIAMETER = 18 INCHES

****PARTIAL FLOW CONDITION****

DEPTH OF FLOW = 0.86 FT

VELOCITY = 9.6 FPS

****FLOWING FULL CONDITION****

MINIMUM REQURIED SLOPE = 0.0078 FT/FT

FLOWING FULL VELOCITY = 5.66 FPS

This form helps determine the normal depth of water in a trapezoidal channel.

Channel Flow

This form helps determine the normal depth of water in a trapezoidal channel.
Input Data:
Flow Rate = cfs
Bottom Width = ft
1st Sideslope Factor = :1
2nd Sideslope Factor = :1
Longitudinal Slope = ft/ft
Mannings 'n' =
Results:
Normal Depth = ft
Area = ft2
Velocity = ft/s
Top Width = ft
Hydraulic Radius =

MANNING'S FORMULA

Q = A * 1.486/n * R2/3 * S1/2

  • Q = Discharge (cu. ft./sec.)
  • A = Cross-sectional Area of Flow (sq. ft.)
  • n = Coefficient of Roughness
  • R = Hydraulic Radius (ft.)
  • S = Slope of Pipe (ft./ft.)

Hydraulic Radius

R = A / P

  • R = Hydraulic Radius (ft.)
  • A = Cross-sectional Area of Flow (sq. ft.)
  • P = Wetted perimeter (ft.)

Area of a Trapezoid

A = B * D + [(Z1+Z2)/2] * D2

  • A = Cross-sectional Area of Flow (sq. ft.)
  • B = Bottom width (ft.)
  • D = Depth of flow
  • Z1 = Left side slope (z:1)
  • Z2 = Right side slope (z:1)

Wetted Perimeter of a Trapezoid

P = B + [(Z1*D)2 + D2]1/2 + [(Z2*D)2 + D2]1/2

  • P = Wetted perimeter (ft.)
  • B = Bottom width (ft.)
  • D = Depth of flow
  • Z1 = Left side slope (z:1)
  • Z2 = Right side slope (z:1)
Material Manning's n
Metals
Brass 0.011
Cast Iron 0.013
Smooth Steel 0.012
Corrugated Metal 0.022
Non-Metals
Glass 0.010
Clay Tile 0.014
Brickwork 0.015
Asphalt 0.016
Masonry 0.025
Finished Concrete 0.012
Unfinished Concrete 0.014
Gravel 0.029
Earth 0.025
Planed Wood 0.012
Unplaned Wood 0.013
Corrugated Polyethylene (PE) with smooth inner walls 0.009-0.015
Corrugated Polyethylene (PE) with corrugated inner walls 0.018-0.025
Polyvinyl Chloride (PVC) with smooth inner walls 0.009-0.011
Excavated Earth Channels
Clean 0.022
Gravelly 0.025
Weedy 0.030
Stony, Cobbles 0.035
Natural Streams
Clean and Straight 0.030
Major Rivers 0.035
Sluggish with Deep Pools 0.040
Floodplains
Pasture, Farmland 0.035
Light Brush 0.050
Heavy Brush 0.075
Trees 0.15

Mannings Formula
Q = a x 1.486/n x R2/3 x S1/2
Input Data:
Area = ft²
Mannings 'n' =
Wetted Perimeter = ft
Slope = ft/ft
Results:
Hydraulic Radius = ft
Flow Rate = cfs
Velocity = ft/s

MANNING'S FORMULA

Q = A *1.486/n * R2/3 * S1/2

  • Q = Discharge (cu. ft./sec.)
  • A = Cross-sectional Area of Flow (sq. ft.)
  • n = Coefficient of Roughness
  • R = Hydraulic Radius (ft.)
  • S = Slope of Pipe (ft./ft.)

Hydraulic Radius

R = A / P

  • R = Hydraulic Radius (ft.)
  • A = Cross-sectional Area of Flow (sq. ft.)
  • P = Wetted perimeter (ft.)
Material Manning's n
Metals
Brass 0.011
Cast Iron 0.013
Smooth Steel 0.012
Corrugated Metal 0.022
Non-Metals
Glass 0.010
Clay Tile 0.014
Brickwork 0.015
Asphalt 0.016
Masonry 0.025
Finished Concrete 0.012
Unfinished Concrete 0.014
Gravel 0.029
Earth 0.025
Planed Wood 0.012
Unplaned Wood 0.013
Corrugated Polyethylene (PE) with smooth inner walls 0.009-0.015
Corrugated Polyethylene (PE) with corrugated inner walls 0.018-0.025
Polyvinyl Chloride (PVC) with smooth inner walls 0.009-0.011
Excavated Earth Channels
Clean 0.022
Gravelly 0.025
Weedy 0.030
Stony, Cobbles 0.035 tr
Natural Streams
Clean and Straight 0.030
Major Rivers 0.035
Sluggish with Deep Pools 0.040
Floodplains
Pasture, Farmland 0.035
Light Brush 0.050
Heavy Brush 0.075
Trees 0.15

Kutters Formula
Q = a * c * [R * S]1/2
c = 41.65 + 0.00281/S + 1.811/n

1 + [41.65 + 0.00281/S] * n/R1/2
Input Data:
Area = ft²
Hydraulic Radius = ft
Mannings 'n' =
Slope = ft/ft
Results:
Flow = cfs
Velocity = ft/s
Material Manning's n
Metals
Brass 0.011
Cast Iron 0.013
Smooth Steel 0.012
Corrugated Metal 0.022
Non-Metals
Glass 0.010
Clay Tile 0.014
Brickwork 0.015
Asphalt 0.016
Masonry 0.025
Finished Concrete 0.012
Unfinished Concrete 0.014
Gravel 0.029
Earth 0.025
Planed Wood 0.012
Unplaned Wood 0.013
Corrugated Polyethylene (PE) with smooth inner walls 0.009-0.015
Corrugated Polyethylene (PE) with corrugated inner walls 0.018-0.025
Polyvinyl Chloride (PVC) with smooth inner walls 0.009-0.011
Excavated Earth Channels
Clean 0.022
Gravelly 0.025
Weedy 0.030
Stony, Cobbles 0.035 tr
Natural Streams
Clean and Straight 0.030
Major Rivers 0.035
Sluggish with Deep Pools 0.040
Floodplains
Pasture, Farmland 0.035
Light Brush 0.050
Heavy Brush 0.075
Trees 0.15

Talbot's Formula

Talbot's Formula

a = C * A3/4
  • a = Required section of waterway in square feet
  • A = Drainage area in acres
  • C = Talbot's coefficient
Input Data:
Drainage Area = Ac.
Talbot's Coefficient =
Results:
Waterway Area = ft²
Pipe Size = in.

Talbot's Coefficient

 MountainousHilly LandRolling LandFlat Land
C = 1.00 0.800.60 0.500.40 0.300.20


Pipe Areas

Pipe SizePipe Area

Weir Flow
Input Data:

Type:
Broadcrested
Cipolletti
V-Notch - 90°
V-Notch - 60°
V-Notch - 45°
V-Notch - 22½°

Weir Flow = cfs
Weir Length = ft
Results:
Weir Head = ft
Equation:

H = (0.297 * Q / L)2/3
H = (0.400 * Q)2/5
H = (0.693 * Q)2/5
H = (0.966 * Q)2/5
H = (2.012 * Q)2/5

Head Loss
This form helps determine the head loss in water pipes based on the Hazen Williams equation:
hl = 10.44 * L * Q1.85
C1.85 * d4.8655
Input Data:

Equation:
Hazen-Williams
Darcy-Weisbach

Flow = gpm
'C' Value =
Pipe Diameter = in
Pipe Length = ft
Results:

Head Loss = ft

Discharge from a Tank
Input Data:

Discharge Coeff. =
Hole area = sq. ft.
Head on Tank = ft
Contraction Coeff. =
y Position = ft
x Position = ft
Results:

Velocity Coeff. =
Discharge = cfs
                     = gpm
Initial Velocity = ft/s
Head Loss = ft
x Position = ft
y Position = ft

Orifice Coefficients for Water

DescriptionCdCcCv
sharp-edged0.620.630.98
round-edged0.981.000.98
short tube (fluid seperates from walls0.611.000.61
short tube (no seperation)0.821.000.82
short tube with rounded entrance0.970.990.98
reentrant tube, length is less than one-half of pipe diameter0.540.550.99
reentrant tube, length 2 to 3 pipe diameters0.721.000.72
smooth, well tapered nozzle0.980.990.99

Drop Inlet Flow Calculator
Leave either Area, Flow, or Head blank for calculation of that quantity.
Input Data:
Design flow = cfs
Design head = ft
Inlet net area = sq. ft.
Orifice coefficient =
Results:
Design flow = cfs
Design head = ft
Inlet area req'd = sq. ft.

Orifice Coefficient:

Openings with square edges: 0.6
Openings with round edges: 0.8

PVC Pipe Data

Schedule 40

Nominal
 Pipe  O.D.   Average  Min.   Nominal   Max.
 Size          I.D.    Wall   Wt./Ft.   W.P.
 (in)                                   PSI
1/8    .405    .261    .068    .045     810
1/4    .540    .354    .088    .081     780
3/8    .675    .483    .091    .109     620
1/2    .840    .608    .109    .161     600
3/4   1.050    .810    .113    .214     480
1     1.315   1.033    .133    .315     450
1-1/4 1.660   1.364    .140    .426     370
1-1/2 1.900   1.592    .145    .509     330
2     2.375   2.049    .154    .682     280
2-1/2 2.875   2.445    .203   1.076     300
3     3.500   3.042    .216   1.409     260
3-1/2 4.000   3.520    .226   1.697     240
4     4.500   3.998    .237   2.006     220
5     5.563   5.017    .258   2.726     190
6     6.625   6.031    .280   3.535     180
8     8.625   7.943    .322   5.305     160
10   10.750   9.976    .365   7.532     140
12   12.750  11.890    .406   9.949     130
14   14.000  13.072    .437  11.810     130
16   16.000  14.940    .500  15.416     130
18   18.000  16.809    .562  20.112     130
20   20.000  18.743    .593  23.624     120
24   24.000  22.544    .687  32.873     120

Schedule 80

Nominal
 Pipe  O.D.   Average  Min.   Nominal   Max.
 Size          I.D.    Wall   Wt./Ft.   W.P.
 (in)                                   PSI
1/8   .405     .203   .095     .058    1230
1/4   .540     .288   .119     .100    1130
3/8   .675     .407   .126     .138     920
1/2   .840     .528   .147     .202     850
3/4   1.050    .724   .154     .273     690
1     1.315    .935   .179     .402     630
1-1/4 1.660   1.256   .191     .554     520
1-1/2 1.900   1.476   .200     .673     470
2     2.375   1.913   .218     .932     400
2-1/2 2.875   2.289   .276    1.419     420
3     3.500   2.864   .300    1.903     370
3-1/2 4.000   3.326   .318    2.322     350
4     4.500   3.786   .337    2.782     320
5     5.563   4.767   .375    3.867     290
6     6.625   5.709   .432    5.313     280
8     8.625   7.565   .500    8.058     250
10   10.750   9.492   .593   11.956     230
12   12.750  11.294   .687   16.437     230
14   14.000  12.410   .750   19.790     220
16   16.000  14.214   .843   25.430     220
18   18.000  16.014   .937   31.830     220
20   20.000  17.814  1.031   40.091     220
24   24.000  21.418  1.218   56.882     210

Schedule 120

Nominal
 Pipe  O.D.   Average  Min.   Nominal   Max.
 Size          I.D.    Wall   Wt./Ft.   W.P.
 (in)                                   PSI
1/2    .840    .480    .170    .223    1010
3/4   1.050    .690    .170    .295     770
1     1.315    .891    .200    .440     720
1-1/4 1.660   1.204    .215    .614     600
1-1/2 1.900   1.423    .225    .744     540
2     2.375   1.845    .250   1.052     470
2-1/2 2.875   2.239    .300   1.529     470
3     3.500   2.758    .350   2.184     440
4     4.500   3.572    .437   3.516     430
6     6.625   5.434    .562   6.759     370

SDR-21

Nominal
 Pipe  O.D.   Average  Min.   Nominal
 Size          I.D.    Wall   Wt./Ft.
 (in)
3/4   1.050     .910   .060    .129
1     1.315    1.169   .063    .170

1-1/4 1.660    1.482   .079    .263
1-1/2 1.900    1.700   .090    .339
2     2.375    2.129   .113    .521
2-1/2 2.875    2.581   .137    .754
3     3.500    3.146   .167   1.106
3-1/2 4.000    3.596   .190   1.443
4     4.500    4.046   .214   1.825
5     5.563    5.001   .265   2.792
6     6.625    5.955   .316   3.964
8     8.625    7.755   .410   6.679

SDR-26

Nominal
 Pipe  O.D.   Average  Min.   Nominal
 Size          I.D.    Wall   Wt./Ft.
 (in)
1     1.315    1.175   .060     .164
1-1/4 1.660    1.512   .064     .221
1-1/2 1.900    1.734   .073     .284
2     2.375    2.173   .091     .432
2-1/2 2.875    2.635   .110     .622
3     3.500    3.210   .135     .915
3-1/2 4.000    3.672   .154    1.183
4     4.500    4.134   .173    1.494
5     5.563    5.109   .214    2.288
6     6.625    6.085   .255    3.228
8     8.625    7.921   .332    5.468
10   10.750    9.874   .413    8.492
12   12.750   11.710   .490   11.956
14   14.000   12.860   .538   14.430
16   16.000   14.696   .615   18.810
18   18.000   16.534   .692   23.860
20   20.000   18.370   .769   29.470
24   24.000   22.043   .923   42.520

SDR-41

Nominal
 Pipe  O.D.   Average  Min.   Nominal
 Size          I.D.    Wall   Wt./Ft.
 (in)
18   18.000   17.070   .439   15.370
20   20.000   18.970   .488   18.920
24   24.000   22.748   .585   27.320

General

Physical Properties of
PVC Pipe                         Value         Test Method

 GENERAL
Cell Classification              12454         ASTM D1784
Maximum Service Temperature      140°F
Color                         white, dark gray
Water Absorption % increase
   24hrs @ 25°C                    .05         ASTM D570
Hardness, Rockwell              110-120        ASTM D785
Poisson's Ratio @ 73°F            .410
Hazen-Williams Factor            C=150

Mechanical

Physical Properties of
PVC Pipe                         Value         Test Method
 
 MECHANICAL
Specific Gravity (g/cu,cm)      1.40 ± .02     ASTM D792
Tensile Strength, psi @ 73°F      7,450        ASTM D638
Modulus of Elasticity,
   psi @ 73°F (Tensile Modulus)   420,000      ASTM D638
Flexural Strength, psi @ 73°F      14,450      ASTM D790
Compressive Strength, psi @ 73°F    9,600      ASTM D695
Izod Impact, ft-lb./in. @ 73°F      .75        ASTM D256

Thermal

Physical Properties of
PVC Pipe                         Value         Test Method
 
 THERMAL
Coefficient of Linear
   Expansion (in/in/°F)         2.9 x 10^-5    ASTM D696
Coefficient of Thermal
   Conductivity
   (BTU/in/hr/ft/°F)                3.5        ASTM C177
Heat Distortion Temperature,
   °F @ 264 psi                     170        ASTM D648
Specific Heat, Cal/°C/gm            .25        ASTM D2766

Electrical

Physical Properties of
PVC Pipe                         Value         Test Method
 
 ELECTRICAL
Dielectric Strength, V/mil         1,413       ASTM D149
Dielectric Constant, 60 Hz, 30°F    3.7        ASTM D150
Volume Resistivity, ohm / cm
   @ 95°C, ohms/cm              1.2 x 10^12    ASTM D257
Harvel PVC Pipe is non-electrolytic

Flammability

Physical Properties of
PVC Pipe                         Value         Test Method
 
 FLAMMABILITY
Flammability Rating                 V-0        UL 94
Flame Spread Index                  <10        ASTM E162
Flame Spread                     0-25 10-25    ULC ASTM E84
Flash Ignition Temp                 730°F
Average Time of Burning (sec.)      <5         ASTM D635
Average Extent of Burning (mm)      <10
Burning Rate (in/min)               Self
                                    Extinguishing
Softening Starts, (approx.)         250°F
Material Becomes Viscous            350°F
Material Carbonizes                 425°F
Smoke Generation              80-225 600-1000  ULC ASTM E84

Equivalent Pipe Diameter
Input Data:

Pipe Diameter 1 = in
Pipe Diameter 2 = in
Pipe Diameter 3 = in
Pipe Diameter 4 = in
Pipe Diameter 5 = in
Results:

Equivalent Pipe Diameter = in
PIPE
COMBINATION
(inches)
EQUIVALENT
SIZE
(inches)
2 - 2½ 2.97
2 - 3 3.36
2 - 4 4.23
2 - 6 6.12
2 - 8 8.07
2½ - 3 3.61
2½ - 4 4.41
2½ - 6 6.22
2½ - 8 8.13
3 - 3 3.90
3 - 4 4.63
3 - 6 6.34
3 - 8 8.22
4 - 4 5.20
4 - 6 6.71
4 - 8 8.46
6 - 6 7.80
6 - 8 9.25
6 - 10 10.91

Ductile Iron Pipe Data

ANSI/AWWA C150/A21.50
and
ANSI/AWWA C151/A21.51
Standard Pressure Classes - Wall Thickness and Nominal Wall Thicknesses

Table No. 3-8
Size
in.
Outside
Diameter
in.
Pressure Class
150 200 250 300 350
Nominal Thickness in inches
4 4.8 - - - - 0.25
6 6.9 - - - - 0.25
8 9.05 - - - - 0.25
10 11.1 - - - - 0.26
12 13.2 - - - - 0.28
14 15.3 - - 0.28 0.3 0.31
16 17.4 - - 0.3 0.32 0.34
18 19.5 - - 0.31 0.34 0.36
20 21.6 - - 0.33 0.36 0.38
24 25.8 - 0.33 0.37 0.4 0.43
30 32 0.34 0.38 0.42 0.45 0.49
36 38.3 0.38 0.42 0.47 0.51 0.56
42 44.5 0.41 0.47 0.52 0.57 0.63
48 50.8 0.46 0.52 0.58 0.64 0.7
54 57.56 0.51 0.58 0.65 0.72 0.79
60 61.61 0.54 0.61 0.68 0.76 0.83
64 65.67 0.56 0.64 0.72 0.8 0.87
Notes:

Pressure classes are defined as the rated water working pressure of the pipe in psi. The thicknesses shown are adequate for the rated working pressure plus a surge allowance of 100 psi. Calculations result in net thicknesses and are based on a minimum yield strength in tension of 42,000 psi and 2.0 safety factor times the sum of working pressure and 100 psi surge allowance.

Thickness can be calculated for rated water working pressure and surges other than the above by use of equation 1 in ANSI/AWWA C150/A21.50.


Last Updated on 9/29/2003
By Nicholas Connolly

Sewer Connection by Line Size
This program determines how many houses can be up-stream from a pipe using an average slope and Manning's 'n' number. The program determines this by assuming that the pipe is flowing full and using Manning's formula and the ratio of extreme to daily flows from the MDEQ sewer design manual.
Input Data:
Diameter = in.
Pipe Slope = ft/ft
Mannings 'n' =
People per house =
Results:
Area = ft2
Perimeter = ft
Hydraulic Radius = ft
Velocity = ft/s
Flow = cfs
gpd
Population = people
houses

Ratio of Extreme Flow to Daily Average Flow

Qmax/Qave= 18 + P1/2
4 + P1/2
          P = population in thousands

Manning's Formula

Q = A x
1.486
n
x R2/3 x S1/2
  • A = area in sq. ft.
  • n = Manning's roughness number
  • R = hydraulic radius (A/P)
  • P = perimeter of pipe in ft.
  • S = slope of pipe in ft./ft.

Houses at Minimum Slope

Pipe Size Minimum Slope Houses

Average Monthly Water Use
Customer Classification Average Monthly
Water Use in ccf
Average Monthly
Water Use in gallons
Residential 11 8,000
Apartment 6 4,500
Inn 12 9,000
Office Building 4 3,000
Small Commercial 18 13,000
Medium Commercial 157 117,000
Large Commercial 675 505,000
Small Industrial 21 16,000
Medium Industrial 323 242,000
Large Industrial 2776 2,076,000

Note: 1 Ccf = 748 Gallons

Information from: www.tampagov.net

Non-Residential Water Demand
Type of Establishment Water Used (gpd)
Airport (per passenger) 3-5
Apartment, multiple family (per resident) 50
Bathhouse (per bather) 10
Boardinghouse (per boarder) 50
       Additional kitchen requirements for nonresident boarders 10
Camp:  
  Construction, semipermanent (per worker) 50
  Day, no meals served (per camper) 15
  Luxury (per camper) 100 - 150
  Resort, day and night, limited plumbing (per camper) 50
  Tourist, central bath and toilet facilities (per person) 35
  Cottage, seasonal occupancy (per resident) 50
Club:  
  Country (per resident member) 100
  Country (per nonresident member present) 25
Factory (gallons per person per shift) 15 - 35
Highway rest area (per person) 5
Hotel:  
  Private baths (2 persons per room) 50
  No private baths (per person) 50
Institution other than hospital (per person) 75 - 125
  Hospital (per bed) 250 - 400
Lawn and Garden (per 1000 sq. ft.) 600
  Assumes 1-inch per day (typical)  
Laundry, self-serviced (gallons per washing [per customer] 50
Livestock Drinking (per animal):  
  Beef, yearlings 20
  Brood Sows, nursing 6
  Cattle or Steers 12
  Dairy 20
  Dry Cows or Heifers 15
  Goat or Sheep 2
  Hogs/Swine 4
  Horse or Mules 12
Livestock Facilities  
  Dairy Sanitation (milkroom) 500
  Floor Flushing (per 100 sq. ft.) 10
  Sanitary Hog Wallow 100
Motel:  
  Bath, toilet, and kitchen facilities (per bed space) 50
  Bed and toilet (per bed space) 40
Park:  
  Overnight, flush toilets (per camper) 25
  Trailer, individual bath units, no sewer connection (per trailer) 25
  Trailer, individual baths, connected to sewer (per person) 50
Picnic:  
  Bathhouses, showers, and flush toilets (per picnicker) 20
  Toilet facilities only (gallons per picnicker) 10
Poultry (per 100 birds):  
  Chicken 5-10
  Ducks 22
  Turkeys 10-25
Restaurant:  
  Toilet facilities (per patron) 7-10
  No toilet facilities (per patron) 2.5 - 3
  Bar and cocktail lounge (additional quantity per patron) 2
School:  
  Boarding (per pupil) 75 - 100
  Day, cafeteria, gymnasiums, and showers (per pupil) 25
  Day, cafeteria, no gymnasiums or showers (per pupil) 20
  Day, no cafeteria, gymnasiums or showers (per pupil) 15
Service station (per vehicle) 10
Store (per toilet room) 400
Swimming pool (per swimmer)  
  Maintenance (per 100 sq. ft.) 10
Theater:  
  Drive-in (per car space) 5
  Movie (per auditorium seat) 5
Worker:  
  Construction (per person per shift) 50
  Day (school or offices per person per shift) 15

Source: Adapted from Design and Construction of Small Water Systems: A Guide for Managers, American Water Works Association, 1984, and Planning for an Individual Water System. American Association for Vocational Instructional Materials, 1982.

Froelich Breach Predictor Equations

b = 9.5 K0(VsH)0.25

T = 0.59 (Vs0.47)H-0.91

  • b = Average Breach Width (ft),
  • K0 = 0.7 for Piping & 1.0 for Overtopping Failure
  • Vs = Storage Volume (ac-ft)
  • H = Selected Failure Depth (ft) above Breach Bottom
  • T = Time of Failure (hrs, ~H/120 or Minimum of 10 Min)

Roadway

Horizontal Curve
Input Data:

Intersection Angle = o
Degree of Curve = o
P.I. Station =
Results:

Radius = ft
Tangent = ft
Length = ft
External = ft
Long Chord = ft
PC Station =
PT Station =

Horizontal Curve Formulas

Horizontal Curve Picture

D = Degree of Curve, Arc Definition
1° = 1 Degree of Curve
2° = 2 Degrees of Curve
P.C. = Point of Curve
P.T. = Point of Tangent
P.I. = Point of Intersection
I = Intersection Angle, Angle between two tangents
L = Length of Curve, from P.C. to P.T.
T = Tangent Distance
E = External Distance
R = Radius
L.C. = Length of Long Chord
M = Length of Middle Ordinate
c = Length of Sub-Chord
k = Length of Arc for Sub-Chord
d = Angle of Sub-Chord

R = L.C. T = R tan(I/2) = L.C.


2 sin(I/2) 2 cos(I/2)

L.C. = R sin (I/2) D1° = R = 5,729.58 D2° = 5,729.58 D = 5,729.58



2 2 R

M = R [1 - cos(I/2)] = R - R cos(I/2)

 

E + R = sec(I/2)R - M = cos(I/2)


R R
c = 2R sin(d/2) d = kD

100
L.C. = 2R sin(I/2) E = R [sec(I/2) - 1] = R sec(I/2) - R

Vertical Curve
Input Data:

Incoming Grade = %
Outgoing Grade = %
Curve Length = ft
P.V.I. Station =
P.V.I. Elevation = ft
Results:

Tangent Offset at PVI = ft
Rate of Grade Change = %/Sta
PVC Station =
PVC Elevation = ft
PVT Station =
PVT Elevation = ft
x Distance = ft
y Distance = ft
y Elevation = ft
y Station =

VERTICAL CURVE FORMULAS

vertical curve picture

 

L = Length of Curve g2 = Grade of Forward Tangent
PVC = Point of Vertical Curvature a = Parabola Constant
PVI = Point of Vertical Intersection y = Tangent Offset
PVT = Point of Vertical Tangency E = Tangent Offset at PVI
g1 = Grade of Back Tangent r = Rate of Change of Grade

 

y = ax2a = g2 - g1

2 L

E = a (L/2)2

r = g2 - g1

L

Tangent Elevation = YPVC + g1x

Grade Elevation = YPVC + g1x + ax2

Parking Lot Design
parking lot layout

 

Parking Lot Layout Dimensions

9'-0" stall width (8'-0" for 30° and 0°)

nSACUS'U'Spaces
per
100ft.
of tree
Paved
surface
per space
(sq. ft.)
90°19'-0"24'-0" 9'-0"62'-0"19'-0"62'-0"11.1279
60°21'-0"18'-0"10'-5"60'-0"18'-9"55'-6" 9.6313
45°19'-0"13'-0"12'-9"52'-8"16'-7"46'-2" 7.8338
30°16'-6"11'-0"16'-0"44'-0"13'-1"37'-2" 6.3349
8'-0" 12'-0"23'-0"28'-0" 9'-0"30'-0" 4.3326

 

ADA Accessible Parking Space Requirements

Total number of parking spaces provided Total minimum number of accessible parking spaces (5-foot and 8-foot aisles) Total van accessible parking spaces with min. 8-foot access aisle Total additional accessible parking spaces with min. 5-foot access aisle
1 to 25 110
26 to 50 211
51 to 75 312
76 to 100413
101 to 150514
151 to 200615
201 to 300716
301 to 400817
401 to 500927
501 to 1,0002% of total parking provided12.5% of 2nd column87.5% of 2nd column
1,001 and over20 plus 1% of total parking provided over 1,000 spaces12.5% of 2nd column87.5% of 2nd column

 

Handicap parking layout

 

Tractor Trailer Parking Space Requirements

Description Dimension
Parking space length 50 feet 15 meters
Parking space width 9 feet 2.75 meters
Outside turning radii 60 feet 18 meters
Vertical clearance 14 feet 4.25 meters
Backing and maneuvering area 50 feet 15 meters
Loading dock width 10 feet 3 meters
Loading dock height 4 feet 1.2 meters
Loading dock area 2x area of truck bed

Rural Intersection Taper
Input Data:

Radius 1 = ft
Side road width = ft
Deflection angle = °
Results:

Radius 2 = ft

intersection drawing

  • a = Shoulder Width. Note: Where shoulder width is less than 5 ft, use 5-ft minimum.
  • b = 34 ft Minimum
  • c = 10 ft Minimum
  • d = Variable (20-ft Minimum)
  • α = Angle of Intersection (80° - 90 ° Desirable, 60° Minimum) Note: Relocate intersection where angle is less than 60°.
  • R1 = 50 ft
  • R2 = Variable (radius point opposite smaller radius point)

Structural

Bearing Capacity
Input Data:

Cohesion, c = psf
Soil density, γ = pcf
Found. depth, D = ft
Ang. of repose, φ = �
Found. width, B = ft
Factor of Safety =
Results:

Nq =
Nγ =
Nc =
Ultimate bearing cap. = psf
Allowable bearing cap. = psf

Terzaghi's Ultimate Bearing Capacity Equation

For saturated, submerged soils:

qu = qc + qq + qγ = cNc + qNq + ½γ'BNγ . . . for strip foundations

qu = qc + qq + qγ = cNc + qNq + 0.3γ'BNγ . . . for circular or square foundations

  • qc, qq, q . = load contributions from cohesion, soil weight and surcharge
  • Nc, Nq, N . = bearing capacity factors for cohesion, soil weight and surcharge
  • c = cohesion strength of soil
  • q = soil weight
  • γ' = effective bulk density of soil ( γ' = γ - γw )
  • B = width of the foundation

Soil weight is calculated as q = γ'D, where D is the depth of penetration of the foundation

NOTE: γ' is used only for the portion of the soil that is submerged, otherwise the bulk density γ is used (neither is a dry weight!)

For shallow foundations:

  • Nq = eπ tanφ tan2(45 + φ/2)
  • Nγ = (Nq - 1) tan(1.4φ)
  • Nc = (Nq - 1) cotφφ > 0
  • Nc = π + 2 = 5.14φ = 0, clay
  • for deep foundations Nc ≈ 9

Allowable bearing capacity (qa)

qa = qu / FS

For Sandy Soils

Cohesionless soil (80% or more sand), c = 0, φ from table:

Soil Type φ (degrees)
Loose sand 27-35
Medium sand 30-40
Dense sand 35-45
Gravel with some sand 34-48
Silt 26-35

For Clay Soils

Cohesive soil, assume φ = 0, c from table:

Consistency psfkN/m2
Very soft 0 - 500 0 - 48
Soft 500 - 1,000 48 - 96
Medium 1,000 - 2,000 96 - 192
Stiff 2,000 - 4,000 192 - 384
Very stiff 4,000 - 8,000 384 - 766
hard > 8,000 > 766

Blow Count (N, blows/ft or blows/30 cm)

N is the average blows per foot in the stratum, number of blows of a 140-pound hammer falling 30 inches to drive a standard sampler (1.42" I. D., 2.00" O. D.) one foot. The sampler is driven 18 inches and blows counted the last 12 inches.

Sand Clay
Density N N Undrained Compressive
strength (psf)
Very loose 0-4 <2 <500 Very soft
Loose 4-10 2-4 500-1,000 Soft
Medium 10-30 4-8 1,000-2,000 Medium
Dense 30-50 8-15 2,000-4,000 Stiff
Very dense >50 15-30 4,000-8,000 Very stiff


>30 >8,000 Hard

ESTIMATION OF SOIL PARAMETERS FROM STANDARD PENETRATION TESTS

Granular Soil (Sand)

Description Very Loose Loose Medium Dense Very Dense
Standard penetration resistance corr'd, N'*0 4 10 30 50
Approx. angle of internal friction, (φ)degrees**25 – 30 27 – 32 30 – 35 35 – 40 38 – 43
Approx. range of moist unit weight, (γ)pcf** 70 – 100 90 – 115 110 – 130 120 – 140 130 – 150

* N' is SPT value corrected for overburden pressure.
** Use larger values for granular material with 5% or less fine sand and silt.

Cohesive soils (Clay)

(Rather unreliable, use only for preliminary estimate purposes).

Consistency Very Soft Soft Medium Stiff Very Stiff Hard
qu, ksf 0 0.5 1.0 2.0 4.0 8.0
Field standard penetration Resistance, N 0 2 4 8 16 32
γ(moist) pcf 100 – 120 110 – 130 120 – 140

NOTE: The reliability of SPT values to determine shear strength of cohesive soils is poor. The SPT values in cohesive soils should not be used for determination of shear strengths for final design.

Simple Beam - Uniformly Distributed Load
Input Data:

Length = ft
Dist. Load = lb/ft
Elasticity Modulus = ksi
Moment of Inertia = in4
x = ft
Results:

Reaction (R) = lb
Shear (V) = lb
  Vx = ft-lb
Max Moment = ft-lb
  Mx = ft-lb
Max. Delta = in
  Deltax = in

Simple Beam - Load Increasing to One End
Input Data:

Length = ft
Load at end = lbs
Elasticity Modulus = ksi
Moment of Inertia = in4
x = ft
Results:

Reaction at start = lbs
Reaction at end = lbs
  Vx = lbs
Max. Moment = ft-lb
  Mx = ft-lb
Max Delta = in
  Deltax = in

Simple Beam - Load Increasing to Center
Input Data:

Length = ft
Load at center = lbs
Elasticity Modulus = ksi
Moment of Inertia = in4
x = ft
Results:

Reaction at ends = lbs
Max. Shear = lbs
  Vx = lbs
Max. Moment = ft-lb
  Mx = ft-lb
Max. Deflection = in
  Deltax = in

Simple Beam - Concentrated Load
Input Data:

Length = ft
Point Load = lbs
Dist. to Load = ft
Elasticity Modulus = ksi
Moment of Inertia = in4
x = ft
Results:

Reaction at start = lbs
Reaction at end = lbs
  Vx = lbs
Max. Moment = ft-lb
  Mx = ft-lb
Max Deflection = in
  Deltax = in

Plastic Section Modulus

NOTE: This program calculates the plastic section modulus by dividing the cross section into rectangles.

n bn hn yn An Σhi ΣAi h~n Y~n d~n Zn
1
2
3
4
5

Atotal=
Zx=

Welded Wire Mesh Sizes
Current mesh name
(wire size)
Former mesh name
(wire gauge)
Metric name Approximate Weight
(lbs/100 sq. ft)

2x2 W4.0/4.0 2x2 - 4/4 50x50 MW25.8/25.8
2x2 W2.9/2.9 2x2 - 6/6 50x50 MW18.7/18.7
2x2 W2.1/2.1 2x2 - 8/8 50x50 MW13.3/13.3
2x2 W1.4/1.4 2x2 - 10/10 50x50 MW9.1/9.1
2x2 W0.9/0.9 2x2 - 12/12 50x50 MW5.6/5.6
2x2 W0.5/0.5 2x2 - 14/14 50x50 MW3.2/3.2
2x2 W0.3/0.3 2x2 - 16/16 50x50 MW2.0/2.0

3x3 W2.1/2.1 3x3 - 8/8 76x76 MW13.3/13.3
3x3 W1.4/1.4 3x3 - 10/10 76x76 MW9.1/9.1
3x3 W0.9/0.9 3x3 - 12/12 76x76 MW5.6/5.6
3x3 W0.5/0.5 3x3 - 14/14 76x76 MW3.2/3.2

4x4 W4.0/4.0 4x4 -4/4 102x102 MW25.8/25.8 86
4x4 W2.9/2.9 4x4 - 6/6 102x102 MW18.7/18.7 62
4x4 W2.1/2.1 4x4 - 8/8 102x102 MW13.3/13.3 43
4x4 W1.7/1.7 4x4 - 9/9 102x102 MW11.1/11.1
4x4 W1.4/1.4 4x4 - 10/10 102x102 MW9.1/9.1 31
4x4 W0.9/0.9 4x4 - 12/12 102x102 MW5.6/5.6
4x4 W0.7/0.7 4x4 - 13/13 102x102 MW4.2/4.2
4x4 W0.5/0.5 4x4 - 14/14 102x102 MW3.2/3.2

6x6 W7.4/7.4 6x6 - 0/0 152x152 MW47.6/47.6
6x6 W6.3/6.3 6x6 - 1/1 152x152 MW40.6/40.6
6x6 W5.4/5.4 6x6 - 2/2 152x152 MW34.9/34.9
6x6 W4.7/4.7 6x6 - 3/3 152x152 MW30.1/30.1
6x6 W4.0/4.0 6x6 - 4/4 152x152 MW25.8/25.8 58
6x6 W4.0/2.9 6x6 - 4/6 152x152 MW25.8/18.7
6x6 W3.4/3.4 6x6 - 5/5 152x152 MW21.7/21.7
6x6 W2.9/2.9 6x6 - 6/6 152x152 MW18.7/18.7 42
6x6 W2.5/2.5 6x6 - 7/7 152x152 MW15.9/15.9
6x6 W2.1/2.1 6x6 - 8/8 152x152 MW13.3/13.3 29
6x6 W1.7/1.7 6x6 - 9/9 152x152 MW11.1/11.1
6x6 W1.4/1.4 6x6 - 10/10 152x152 MW9.1/9.1 21

12x12 W5.4/5.4 12x12 - 2/2 305x305 MW34.9/34.9

Reinforcing Steel

ASTM Standard Reinforcing Bars

Bar Size
Designation
Weight
(Pounds per Foot)
Nominal Dimensions
Diameter (Inches) Cross-sectional
Area (Sq. Inches)
#3 0.376 0.375 0.11
#4 0.668 0.500 0.20
#5 1.043 0.625 0.31
#6 1.502 0.750 0.44
#7 2.044 0.875 0.60
#8 2.670 1.000 0.79
#9 3.400 1.128 1.00
#10 4.303 1.270 1.27
#11 5.313 1.410 1.56
#14 7.650 1.693 2.25
#18 13.60 2.257 4.00

Inches of Lap Corresponding
to Number of Bar Diameters*

Number of Diameters Size of Bar
#3 #4 #5 #6 #7 #8 #9 #10 #11
20 --- --- 13 15 18 20 23 26 29
22 --- --- 14 17 20 22 25 28 32
24 --- 12 15 18 21 24 28 31 34
30 12 15 19 23 27 30 34 39 43
32 12 16 20 24 28 32 37 41 46
36 14 18 23 27 32 36 41 46 51
40 15 20 25 30 35 40 46 51 57
48 18 24 30 36 42 48 55 61 68
Minimum Lap equals 12 inches * Figured to next larger whole inch

Miscellaneous

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.